Crystal and Molecular Structure of μ-(Dichlorostannio)-bis(tricarbonyl-π-cyclopentadienylchromium)

By Frederick S. Stephens, t Department of Chemistry, University of Essex, Colchester CO4 3SQ

The crystal structure of the title compound has been determined by three-dimensional X-ray diffraction methods by use of counter data and refined to $R 0.057$ for 3458 unique reflections by least-squares methods. The monoclinic unit cell, space group $P 2_{1} / n$, has dimensions $a=10 \cdot 314 \pm 0 \cdot 012, b=15 \cdot 646 \pm 0 \cdot 020, c=12 \cdot 223 \pm 0.012$ \AA. $\beta=93.25 \pm 0.1^{\circ}$, for $Z=4$. The molecular structure consists of SnCl_{2} inserted into the metal-metal bond of the parent dimer $\left[\left\{\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\right]$. The environment about the tin atom is distorted tetrahedral $[\mathrm{Cr}-\mathrm{Sn}-\mathrm{Cr}$ 130.2(1). $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl} 95 \cdot 0(1)^{\circ}$; mean $\mathrm{Sn}-\mathrm{Cr} 2 \cdot 697(3) . \mathrm{Sn}-\mathrm{Cl} 2 \cdot 417(4) \AA$ A]. The chromium atoms have distorted octahedral environments with the carbonyl groups lying along $\{100\}$ directions and the cyclopentadienyl rings lying parallel to the ($\overline{1 T T}$) faces. The $\mathrm{Cr}-\mathrm{Sn}$ bonds are directed along the normals to the (119) faces of the octahedra.

Recently a series of complexes of the type [$(\pi$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}(\mathrm{CO})_{3}\right]\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}^{\prime}(\mathrm{CO})_{3}\right] \mathrm{SnX}_{2} \quad\left(\mathrm{M}, \mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}\right.$, or W ; $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I) have been prepared. ${ }^{1}$ Those in which $\mathrm{M}=\mathrm{M}^{\prime}$ are obtained by the insertion on heating of $\operatorname{tin}(\mathrm{II})$ halides into the metal-metal bonds of the dimers $\left[\left\{\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}(\mathrm{CO})_{3}\right\}_{2}\right]$. The mixed-metal complexes are obtained from the reactions between [$(\pi$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}(\mathrm{CO})_{3} \mathrm{SnX}_{3}\right]$ and $\left[\left\{\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}^{\prime}(\mathrm{CO})_{3}\right\}_{2}\right]$.

The crystal structures of the complexes for a given halide would be of interest since it ought to be possible to correlate structural changes with the metal atoms present in the complexes. The series of complexes chosen for investigation have $\mathrm{X}=\mathrm{Cl}$. The crystal structure is reported of the complex for which $\mathrm{M}=$ $\mathrm{M}^{\prime}=\mathrm{Cr}$.

EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{Cr}_{2} \mathrm{O}_{6} \mathrm{Sn}, \quad M=591 \cdot 8, \quad a=$ $10.314 \pm 0.012, b=15.646 \pm 0.020, c=12.223 \pm 0.012 \AA$, $\beta=93 \cdot 25 \pm 0 \cdot 1^{\circ}, U=1969 \cdot 3 \AA^{3}, D_{\mathrm{m}}=1.99$ (by flotation), $Z=4, \quad D_{\mathrm{o}}=1.996, \quad F(000)=1144$. Mo- K_{α} radiation, $\lambda=0.71069 \AA$, for cell dimensions and intensity measurements; $\mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=26.9 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / n\left(C_{2 h}^{5}\right.$, No. 14) [general positions: $\left.\pm\left|x, y, z ; \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right|\right]$.

The complex crystallises as orange plates lying on the (001) face. Unit-cell parameters were obtained from single-crystal precession photographs by use of Mo- K_{α} radiation. The intensities were collected on a Philips PAILRED diffractometer by use of monochromatised Mo $-K_{\alpha}$ radiation. Each reflection in the $0-13 k l$ layers, for $\sin \theta \leqslant 0.52$, was recorded; 3458 unique reflections were considered observed ${ }^{2}$ giving counts for which $\sigma(I) / I \leqslant 0 \cdot 5$, and were used for the structure analysis. The intensities were corrected for Lorentz and polarisation effects, but no correction for absorption or extinction was applied.

Scattering-factor curves for all atoms were taken from ref. 3 , the values for tin, chromium, and chlorine atoms being corrected for the effects of anomalous dispersion. All calculations were carried out on a PDP 10 computer at the University of Essex, with programmes written by the author.

Structure Determination.-The positions of the tin, chromium, and chlorine atoms were obtained from a threedimensional Patterson synthesis. A Fourier synthesis, phased by these atoms, yielded the positions for all nonhydrogen atoms.
\dagger Present address: School of Chemistry, Macquarie University, North Ryde, New South Wales 2113, Australia.

Refinement of the structure was carried out by a leastsquares procedure in which the function minimised was $\Sigma w \Delta^{2}$. The weight for each reflection, w, was initially unity and in the final refinement was calculated from the expression $w=\left(10.0-0.12\left|F_{0}\right|+0.0007\left|F_{o}\right|^{2}\right)^{-1}$. For this latter weighting scheme the average values of $w \Delta^{2}$ for ranges of increasing $\left|F_{0}\right|$ were almost constant. Reflections for which $\left|F_{\mathrm{c}}\right|<\frac{1}{3}\left|F_{\mathrm{o}}\right|$ were omitted from the least-squares analysis.

Table 1
Atomic co-ordinates (fractional), with estimated standard deviations in parentheses

	x / a	y / b	z / c	$\sigma_{\mathrm{rms}} / \AA$
Sn	-0.08082(7)	$0 \cdot 17340$ (5)	$0 \cdot 15081$ (7)	$0 \cdot 0008$
$\mathrm{Cr}(1)$	0.1431(2)	$0 \cdot 2512(1)$	$0 \cdot 2172(2)$	0.002
$\mathrm{Cr}(2)$	-0.2289(2)	$0.0651(1)$	0.2567(2)	0.002
$\mathrm{Cl}(1)$	-0.0356(3)	$0 \cdot 1158(2)$	$-0.0267(3)$	$0 \cdot 004$
$\mathrm{Cl}(2)$	-0.2386(3)	$0 \cdot 2764(2)$	0.0799(3)	$0 \cdot 004$
O (T11)	-0.0121(11)	$0.2514(11)$	0.4166(10)	0.013
O (T12)	$0 \cdot 0429(11)$	$0 \cdot 3581$ (8)	$0 \cdot 0270$ (11)	0.012
$\mathrm{O}(\mathrm{T} 13)$	$0 \cdot 1950(12)$	0.4277(7)	$0 \cdot 3017(11)$	0.014
O (T21)	-0.2955(11)	0.2322(7)	$0 \cdot 3482(10)$	0.012
O (T22)	$0 \cdot 0376(10)$	$-0.0125(8)$	$0 \cdot 2906(11)$	0.012
O (T23)	-0.2227(16)	$0.0182(11)$	$0 \cdot 4942$ (11)	$0 \cdot 016$
C(T11)	0.0419(13)	$0 \cdot 2499(11)$	$0 \cdot 3370(13)$	0.016
C(T12)	$0 \cdot 0737(12)$	0.3135(8)	$0 \cdot 0982(13)$	0.014
C(T13)	$0 \cdot 1748(13)$	$0 \cdot 3602(10)$	$0 \cdot 2698(13)$	0.015
C(T21)	$-0.2626(13)$	$0 \cdot 1679(10)$	$0 \cdot 3131(13)$	0.015
C (T22)	-0.0628(14)	$0.0194(9)$	$0 \cdot 2760(12)$	0.014
C (T23)	-0.2233(16)	$0.0351(11)$	$0 \cdot 4046(14)$	0.017
C(11)	0.2720(13)	0.1866(9)	$0 \cdot 1069(10)$	0.013
C(12)	$0 \cdot 3469(14)$	$0 \cdot 2439(10)$	$0 \cdot 1796(17)$	0.017
C(13)	$0 \cdot 3333(13)$	$0 \cdot 2151(10)$	$0 \cdot 2858(15)$	0.016
C(14)	$0 \cdot 2570$ (14)	$0 \cdot 1433(10)$	$0 \cdot 2813(14)$	0.015
C(15)	$0 \cdot 2185(12)$	$0 \cdot 1224(8)$	$0 \cdot 1727(11)$	0.013
C(21)	-0.4263(18)	$0 \cdot 0223(24)$	$0 \cdot 2321(20)$	0.028
C(22)	-0.4053(26)	$0.0673(15)$	$0 \cdot 1500(24)$	0.027
C(23)	-0.3138(28)	$0 \cdot 0392(24)$	$0 \cdot 0930(16)$	0.029
C(24)	-0.2739(19)	-0.0375(22)	$0 \cdot 1384(31)$	0.032
$\mathrm{C}(25)$	$-0.3484(32)$	-0.0485(17)	$0 \cdot 2276(28)$	0.031
$\mathrm{H}(11)$	$0 \cdot 259$	$0 \cdot 191$	$0 \cdot 025$	
H(12)	$0 \cdot 399$	0.295	$0 \cdot 160$	
H(13)	$0 \cdot 372$	$0 \cdot 242$	$0 \cdot 355$	
$\mathrm{H}(14)$	$0 \cdot 233$	$0 \cdot 111$	0.345	
H(15)	$0 \cdot 164$	0.072	$0 \cdot 148$	
$\mathrm{H}(21)$	-0.489	0.038	$0 \cdot 288$	
$\mathrm{H}(22)$	-0.458	$0 \cdot 120$	$0 \cdot 133$	
$\mathrm{H}(23)$	-0.277	0.052	0.021	
$\mathrm{H}(24)$	-0.205	-0.075	0.110	
H(25)	-0.345	-0.099	$0 \cdot 279$	

The initial refinement used a full-matrix procedure in which the positional and invidual isotropic thermal parameters for each atom were varied. When the maximum

[^0]shift in any parameter was of the order of its σ a difference synthesis was calculated. This map showed no unusual features and indicated the approximate positions for the hydrogen atoms. The positions of the hydrogen atoms were optimised, assuming $\mathrm{C}-\mathrm{H} 1.0 \AA$, and in subsequent refinement the hydrogen atoms were included with an isotropic thermal parameter of $B 6.0 \AA^{2}$, but not refined.

Final refinement was carried out with anisotropic thermal parameters for all non-hydrogen atoms. Owing to the large number of parameters (245) being refined four block-matrices were used, containing the parameters for the following: (1) overall scale and temperature factor; (2) the tin, chromium, chlorine atoms, and the six carbonyl groups; and (3) and (4) each cyclopentadienyl ligand. The refinement was terminated when the maximum shift in any parameter was $<0 \cdot 1 \sigma .3438$ Reflections were included in the final cycle of refinement. The final value for R, based on 3458 reflections, was 0.057 and for $R^{\prime}\left[=\left(\Sigma w \Delta^{2} / \Sigma w\left|F_{0}\right|^{2}\right)^{\frac{1}{7}}\right]$ was 0.086 .

Final atomic co-ordinates and thermal parameters together with their estimated standard deviations are given in Tables 1 and 2. Observed and calculated structure

Table 2
Thermal parameters $\left(\times 10^{4}\right)$,* with estimated standard deviations in parentheses

	b_{11}	b_{23}	b_{38}	b_{12}	b_{18}	b_{23}
	$41 \cdot 9(5)$	$19 \cdot 7(2)$	$35 \cdot 5(5)$	$0 \cdot 1(4)$	$1 \cdot 9(4)$	$-1 \cdot 0(4)$
Sn	$\mathbf{4}(5)$	$6(1)$	$-3(1)$			
$\mathrm{Cr}(1)$	$39(2)$	$21(1)$	$47(1)$	$-1(1)$	$10(1)$	$3(1)$
$\mathrm{Cr}(2)$	$46(2)$	$21(1)$	$51(2)$	$-2(1)$	$4(2)$	$-8(2)$
$\mathrm{Cl}(1)$	$77(3)$	$37(2)$	$42(2)$	$6(2)$	$-10(2)$	$8(2)$
$\mathrm{Cl}(2)$	$62(3)$	$31(1)$	$76(3)$	$14(2)$	$-10(1)$	
$\mathrm{O}(\mathrm{T} 11)$	$74(11)$	$116(11)$	$58(9)$	$-4(9)$	$11(8)$	$-38(8)$
$\mathrm{O}(\mathrm{T} 12)$	$95(12)$	$43(6)$	$106(12)$	$5(7)$	$8(10)$	$34(7)$
$\mathrm{O}(\mathrm{T} 13)$	$95(13)$	$32(5)$	$189(18)$	$1(7)$	$-45(12)$	$-30(8)$
$\mathrm{O}(\mathrm{T} 21)$	$115(13)$	$41(6)$	$77(9)$	$0(7)$	$32(9)$	$-15(6)$
$\mathrm{O}(\mathrm{T} 22)$	$75(11)$	$57(7)$	$109(12)$	$22(7)$	$-1(9)$	$31(7)$
$\mathrm{O}(\mathrm{T} 23)$	$206(22)$	$98(11)$	$63(11)$	$28(13)$	$39(12)$	$37(9)$
$\mathrm{C}(\mathrm{T} 11)$	$62(12)$	$48(8)$	$62(12)$	$1(8)$	$11(10)$	$-14(8)$
$\mathrm{C}(\mathrm{T} 12)$	$49(11)$	$24(6)$	$83(13)$	$8(6)$	$17(9)$	$-8(7)$
$\mathrm{C}(\mathrm{T} 13)$	$54(12)$	$34(6)$	$75(13)$	$3(7)$	$-16(10)$	$-11(7)$
$\mathrm{C}(\mathrm{T} 21)$	$66(12)$	$28(6)$	$85(13)$	$-12(8)$	$27(10)$	$-5(8)$
$\mathrm{C}(\mathrm{T} 22)$	$75(13)$	$28(6)$	$61(11)$	$-2(7)$	$18(10)$	$5(7)$
$\mathrm{C}(\mathrm{T} 23)$	$105(18)$	$46(8)$	$62(13)$	$8(10)$	$25(12)$	$11(8)$
$\mathrm{C}(11)$	$75(12)$	$38(7)$	$31(8)$	$17(7)$	$6(8)$	$-10(6)$
$\mathrm{C}(12)$	$61(13)$	$34(7)$	$127(18)$	$-1(8)$	$50(12)$	$-3(9)$
$\mathrm{C}(13)$	$48(12)$	$39(7)$	$98(15)$	$22(8)$	$9(11)$	$-4(8)$
$\mathrm{C}(14)$	$60(12)$	$37(7)$	$82(14)$	$8(8)$	$20(11)$	$-1(8)$
$\mathrm{C}(15)$	$59(12)$	$29(5)$	$40(9)$	$8(6)$	$12(8)$	$-3(6)$
$\mathrm{C}(21)$	$60(17)$	$160(26)$	$101(21)$	$-40(18)$	$-31(15)$	$18(20)$
$\mathrm{C}(22)$	$177(32)$	$60(12)$	$124(25)$	$4(16)$	$-115(24)$	$-8(14)$
$\mathrm{C}(23)$	$175(32)$	$135(22)$	$46(13)$	$-122(24)$	$-6(17)$	$-4(14)$
$\mathrm{C}(24)$	$65(17)$	$98(18)$	$221(38)$	$21(15)$	$-34(20)$	$-113(23)$
$\mathrm{C}(25)$	$224(40)$	$60(12)$	$217(38)$	$-101(20)$	$-159(34)$	$72(18)$

For all hydrogen atoms $B=6.0 \AA$.

* Anisotropic thermal parameters in the form:
$\exp -\left(h^{2} b_{11}+k^{2} b_{22}+l^{2} b_{33}+2 h k b_{12}+2 h l b_{13}+2 k l b_{23}\right)$.
factors are listed in Supplementary Publication No. SUP 21189 (20 pp., 1 microfiche). \dagger

DISCUSSION

The Figure shows the molecular geometry of the complex ${ }^{4}$ and the labelling of the atoms. Bond distances and angles, together with their estimated
\dagger See Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue.
${ }^{4}$ C. K. Johnson, ORTEP: A Fortran Thermal-ellipsoid Plot Programme for Crystal Structure Illustrations, Report ORNL 3794, 1965, Revised 1971, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

A perspective drawing of the molecule and the labelling of the atoms. Thermal ellipsoids are scaled to include 35% probability

Table 3
Bond lengths and angles, with estimated standard deviations in parentheses
(a) Distances (\AA)

$\mathrm{Sn}-\mathrm{Cr}(1)$	2.694(2)	$\mathrm{Sn}-\mathrm{Cl}(1)$	9(3)
$\mathrm{Sn}-\mathrm{Cr}(2)$	$2 \cdot 701(2)$	$\mathrm{Sn}-\mathrm{Cl}(2)$	$2 \cdot 416$ (3)
$\mathrm{Cr}(1)-\mathrm{C}(\mathrm{T} 11)$	1.846(15)	$\mathrm{Cr}(2)-\mathrm{C}(\mathrm{T} 21)$	1.843 (15)
$\mathrm{Cr}(1)-\mathrm{C}(\mathrm{T} 12)$	$1.861(16)$	$\mathrm{Cr}(2)-\mathrm{C}(\mathrm{T} 22)$	1-838(14)
$\mathrm{Cr}(1)-\mathrm{C}(\mathrm{Tl} 3)$	$1 \cdot 846(15)$	$\mathrm{Cr}(2)-\mathrm{C}(\mathrm{T} 23)$	1-852(17)
$\mathrm{Cr}(1)-\mathrm{Cp}(1){ }^{*}$	1.838(13)	$\mathrm{Cr}(2)-\mathrm{Cp}(2)$ *	1-831(18)
$\mathrm{Cr}(1)-\mathrm{C}(11)$	2-193(12)	$\mathrm{Cr}(2)-\mathrm{C}(21)$	1-131(17)
$\mathrm{Cr}(1)-\mathrm{C}(12)$	2-181(13)	$\mathrm{Cr}(2)-\mathrm{C}(22)$	2.180(17)
$\mathrm{Cr}(1)-\mathrm{C}(13)$	$2 \cdot 165(14)$	$\mathrm{Cr}(2)-\mathrm{C}(23)$	2.167(18)
$\mathrm{Cr}(1)-\mathrm{C}(14)$	$2 \cdot 175$ (15)	$\mathrm{Cr}(2)-\mathrm{C}(24)$	$2 \cdot 152(19)$
$\mathrm{Cr}(1)-\mathrm{C}(15)$	2-238(13)	$\mathrm{Cr}(2)-\mathrm{C}(25)$	$2 \cdot 136(17)$
C (T11)-O(T11)	$1 \cdot 149(17)$	C (T21)-O(T21)	1-151(17)
$\mathrm{C}(\mathrm{T} 12)-\mathrm{O}(\mathrm{T} 12)$	$1 \cdot 146(17)$	$\mathrm{C}(\mathrm{T} 22)-\mathrm{O}(\mathrm{T} 22)$	1-154(17)
$\mathrm{C}(\mathrm{T} 13)-\mathrm{O}(\mathrm{T} 13)$	1-141(17)	$\mathrm{C}(\mathrm{T} 23)-\mathrm{O}(\mathrm{T} 23)$	1-127(19)
C(11)-C(12)	$1 \cdot 454(22)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1 \cdot 255(35)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 389(24)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1 \cdot 282(35)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 370$ (21)	$\mathrm{C}(23)-\mathrm{C}(24)$	1-376(39)
$\mathrm{C}(14)-\mathrm{C}(15)$	1-403(20)	$\mathrm{C}(24)-\mathrm{C}(25)$	$1 \cdot 380$ (41)
$\mathrm{C}(15)-\mathrm{C}(11)$	1-418(19)	$\mathrm{C}(25)-\mathrm{C}(21)$	1-370(42)
(b) Angles (${ }^{\circ}$)			
$\mathrm{Cr}(1)-\mathrm{Sn}-\mathrm{Cr}(2)$	130-2(1)	$\mathrm{Cl}(1)-\mathrm{Sn}-\mathrm{Cl}(2)$	95.0(1)
$\mathrm{Cr}(1)-\mathrm{Sn}-\mathrm{Cl}(1)$	103.5(1)	$\mathrm{Cr}(2)-\mathrm{Sn}-\mathrm{Cl}(1)$	109.3(1)
$\mathrm{Cr}(1)-\mathrm{Sn}-\mathrm{Cl}(2)$	110.8(1)	$\mathrm{Cr}(2)-\mathrm{Sn}-\mathrm{Cl}(2)$	102.5(1)
$\mathrm{C}(\mathrm{T} 11)-\mathrm{Cr}(1)-\mathrm{C}(\mathrm{T} 12)$	114.6(6)	$\mathrm{C}(\mathrm{T} 21)-\mathrm{Cr}(2)-\mathrm{C}(\mathrm{T} 22)$	$118 \cdot 0$ (6)
$\mathrm{C}(\mathrm{Tl1})-\mathrm{Cr}(1)-\mathrm{C}(\mathrm{T} 13)$	$80 \cdot 3(7)$	$\mathrm{C}(\mathrm{T} 21)-\mathrm{Cr}(2)-\mathrm{C}(\mathrm{T} 23)$	$80 \cdot 3(5)$
$\mathrm{C}(\mathrm{T} 12)-\mathrm{Cr}(1)-\mathrm{C}(\mathrm{T} 13)$	80.8(6)	$\mathrm{C}(\mathrm{T} 22)-\mathrm{Cr}(2)-\mathrm{C}(\mathrm{T} 23)$	79.5(6)
$\mathrm{C}(\mathrm{T} 11)-\mathrm{Cr}(1)-\mathrm{Sn}$	73.8(5)	$\mathrm{C}(\mathrm{T} 21)-\mathrm{Cr}(2)-\mathrm{Sn}$	73.6(4)
$\mathrm{C}(\mathrm{T} 12)-\mathrm{Cr}(1)-\mathrm{Sn}$	73.5(4)	$\mathrm{C}(\mathrm{T} 22)-\mathrm{Cr}(2)-\mathrm{Sn}$	75.3(4)
$\mathrm{C}(\mathrm{T} 13)-\mathrm{Cr}(1)-\mathrm{Sn}$	$130 \cdot 9(4)$	$\mathrm{C}(\mathrm{T} 23)-\mathrm{Cr}(2)-\mathrm{Sn}$	128.7(5)
$\mathrm{Sn}-\mathrm{Cr}(1)-\mathrm{Cp}(1) *$	112.8(7)	$\mathrm{Sn}-\mathrm{Cr}(2)-\mathrm{Cp}(2) *$	114.1(7)
$\mathrm{C}(\mathrm{Tll})-\mathrm{Cr}(1)-\mathrm{Cp}(1)$ *	123.2(7)	$\mathrm{C}(\mathrm{T} 21)-\mathrm{Cr}(2)-\mathrm{Cp}(2) *$	119.3(7)
$\mathrm{C}(\mathrm{Tl} 2)-\mathrm{Cr}(1)-\mathrm{Cp}(1) *$	121.4(7)	$\mathrm{C}(\mathrm{T} 22)-\mathrm{Cr}(2)-\mathrm{Cp}(2)$	122.2(7)
$\mathrm{C}(\mathrm{T} 13)-\mathrm{Cr}(1)-\mathrm{Cp}(1) *$	116.4(7)	$\mathrm{C}(\mathrm{T} 23)-\mathrm{Cr}(2)-\mathrm{Cp}(2) *$	117.2(7)
$\mathrm{Cr}(1)-\mathrm{C}(\mathrm{Tll})-\mathrm{O}(\mathrm{Tll})$	174.2(13)	$\mathrm{Cr}(2)-\mathrm{C}(\mathrm{T} 21)-\mathrm{O}(\mathrm{T} 21)$	$173 \cdot 7(12)$
$\mathrm{Cr}(1)-\mathrm{C}(\mathrm{Tl2})-\mathrm{O}(\mathrm{T} 12)$	$172 \cdot 1(12)$	$\mathrm{Cr}(2)-\mathrm{C}(\mathrm{T} 22)-\mathrm{O}(\mathrm{T} 22)$	$175 \cdot 0(13)$
$\mathrm{Cr}(1)-\mathrm{C}(\mathrm{Tl} 3)-\mathrm{O}(\mathrm{T} 13)$	179.5(16)	$\mathrm{Cr}(2)-\mathrm{C}(\mathrm{T} 23)-\mathrm{O}(\mathrm{T} 23)$	178.4(17)
$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)$	107.6(12)	$\mathrm{C}(25)-\mathrm{C}(21)-\mathrm{C}(22)$	107.1(26)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	107•0(13)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	114.0(26)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	108.4(15)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	107.0(22)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	111.2(14)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	105•1(20)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(11)$	105•8(12)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(21)$	106.6(21)

[^1]standard deviations derived directly from the leastsquares inverse matrices, are given in Table 3, and details of planes in Table 4. The molecules are held in the crystal by van der Waals forces. The closest approach of two atoms involving carbonyl groups is

Table 4

Least-squares planes and their equations given by $l X^{\prime}+$ $m Y^{\prime}+n Z^{\prime}-p=0$ where the orthogonalised coordinates X^{\prime}, Y^{\prime}, and Z^{\prime} are derived from the atomic co-ordinates, X, Y, and Z by $X^{\prime}=X \sin \beta, Y^{\prime}=Y$, and $Z^{\prime}=Z+X \cos \beta$. Deviations (\AA) of the most relevant atoms from the planes are given in square brackets

	l	m	n	
Plane (1): $\mathrm{Sn}, \mathrm{Cr}(\mathbf{1}) \mathrm{Cr}(2)$	-0.5171	0.7603	0.3931	P36
Plane (2): $\mathrm{Sn}, \mathrm{Cl}(1), \mathrm{Cl}(2)$	0.7280	0.674	-0.122	0.992
Plane (3) : C(11)-(15)	0.815	0.567	$0 \cdot 11$	
$\left[\begin{array}{ll} {[\mathrm{C}(11)} & -0.012, \mathrm{C}(12) \\ \mathrm{C}(15) \\ 0.011] \end{array}\right.$	$0.009, \mathrm{C}$	-0.00	(14)	-0.005,
Plane (4): $\mathrm{C}(21)-(25)$	-0.6932	$0 \cdot 485$	0.532	
$\left[\begin{array}{ll} {[(21)} & -0.023, \\ \mathrm{C}(25) & \mathrm{O}(22) \\ \hline \end{array}\right.$	$0.025,$	-0	$\mathrm{C}(24)$	

$3 \cdot 14 \AA\left[\mathrm{O}(\mathrm{T} 12) \cdots \mathrm{O}(\mathrm{T} 23)\right.$ at $\left.\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}\right]$ and involving a chlorine atom is $3.39 \AA[\mathrm{Cl}(2) \cdots \mathrm{O}(\mathrm{Tll})$ at $\left.x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}\right]$.

The molecules have the predicted structure ${ }^{1}$ with $\operatorname{tin}(\mathrm{II})$ chloride inserted into the metal-metal bond of $\left[\left\{\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\right]$. The corresponding distances and angles within each $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cr}(\mathrm{CO})_{3}\right]$ fragment are, within experimental error, the same and show no significant variations from those in the parent dimer. ${ }^{5}$ The environment about the tin atom is distorted tetrahedral, with $\mathrm{Cr}^{-} \mathrm{Sn}-\mathrm{Cr} 130 \cdot 2$ and $\mathrm{Cl}^{-} \mathrm{Sn}^{-\mathrm{Cl} 95 \cdot 0^{\circ} \text {. This }}$ environment has been observed in similar complexes, e.g. $\left[\left\{\left(\pi-\mathrm{C}_{7} \mathrm{H}_{8}\right) \mathrm{Co}(\mathrm{CO})_{2}\right\}_{2}\right] \mathrm{SnCl}_{2}$ (ref. 6) and $\left[\left\{\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.\right.$ $\left.\left.\mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\right] \mathrm{SnCl}_{2}$ (ref. 7), in which the corresponding angles are respectively 128.3 and 98.1°, and 128.6 and $94 \cdot 1^{\circ}$. The $\mathrm{Sn}-\mathrm{Cl}$ distance (mean $2 \cdot 417 \AA$) is in good agreement with those in the aforementioned cobalt ${ }^{6}$ and iron ${ }^{7}$ complexes but is significantly longer than that $(2.31 \AA)$ in $\mathrm{SnCl}_{4} .8$ It is also in good agreement with the sum of the single-bond covalent radii ($1 \cdot 40+0.99 \AA$). ${ }^{9}$

[^2]From the $\mathrm{Sn}-\mathrm{Cr}$ distance (mean $2 \cdot 697 \AA$) and assuming the tetrahedral radius of $1 \cdot 40 \AA$ for $\operatorname{tin}(\mathrm{Iv})$ the radius of the chromium atom is estimated to be $1 \cdot 30 \AA$. This value is considerably shorter than that ($1 \cdot 48 \AA$) for the estimated single-bond covalent radius of chromium in $\left[\mathrm{Cr}(\operatorname{dien})(\mathrm{CO})_{3}\right]$ (dien $=$ diethylenetriamine). ${ }^{\mathbf{1 0}}$

The environment about a chromium atom is best described as octahedral in which the carbonyl groups lie approximately along $\{100\}$ directions and the cyclopentadienyl ring lies parallel to the ($\overline{11} \overline{1}$) face. The $\mathrm{Cr}-\mathrm{Sn}$ bond is then directed along the normal to the (llī) face. As shown in Table 5 a distortion from a

Table 5
Comparison of the angles about the chromium atoms in the present structure (I) and in the parent dimer (II) with those calculated for a regular octahedral environment

	(I)	(II)	Calc.	Directions \dagger
$\mathrm{Cp}-\mathrm{Cr}-\mathrm{M}$ *	113.5°	116.7°	109.5°	($\overline{1} 1 \overline{1}$) : (111)
$\mathrm{C}(\mathrm{T} 1)-\mathrm{Cr}-\mathrm{M}$	$74 \cdot 0$	$71 \cdot 3$	54.7	(100) : (11I)
$\mathrm{C}(\mathrm{T} 2)-\mathrm{Cr}-\mathrm{M}$	74.0	$71 \cdot 3$	$54 \cdot 7$	(010) $\cdot(111)$
$\mathrm{C}(\mathrm{T} 3)-\mathrm{Cr}-\mathrm{M}$	129.8	$127 \cdot 8$	125.3	(001) : (11I)
$\mathrm{Cp}-\mathrm{Cr}-\mathrm{C}(\mathrm{Tl})$	121.5	$124 \cdot 5$	$125 \cdot 3$	(1II: (100)
$\mathrm{Cp}-\mathrm{Cr}-\mathrm{C}(\mathrm{T} 2)$				(IIT. (010)
$\mathrm{Cp}-\mathrm{Cr}-\mathrm{C}(\mathrm{T} 3)$	116.8	$114 \cdot 8$	$125 \cdot 3$	(III) : (001)
$\mathrm{C}(\mathrm{T} 1)-\mathrm{Cr}-\mathrm{C}(\mathrm{T} 2)$	116.3	$114 \cdot 4$	$90 \cdot 0$	(100) : (010)
$\mathrm{C}(\mathrm{T} 1)-\mathrm{Cr}-\mathrm{C}(\mathrm{T} 3)$	$80 \cdot 2$	$80 \cdot 0$	$90 \cdot 0$	$(100):(001)$
$\begin{aligned} & \mathrm{C}(\mathrm{~T} 2)-\mathrm{Cr}-\mathrm{C}(\mathrm{~T} 3) \\ & \mathrm{Cr}-\mathrm{C}(\mathrm{~T} 1)-\mathrm{O}(\mathrm{~T} 1) \end{aligned}$	802			(001) ${ }^{(001)}$
$\stackrel{\mathrm{Cr}}{\mathrm{Cr}} \mathrm{C}(\mathrm{T} 2)-\mathrm{O}(\mathrm{T} 2)$	$173 \cdot 8$	$172 \cdot 0$		
$\mathrm{Cr}-\mathrm{C}(\mathrm{T} 3)-\mathrm{O}(\mathrm{T} 3)$	179.0	178.7		
* Cp is the centroid of the cyclopentadienyl ring; $\mathrm{M}=\mathrm{Sn}$ for (I) and $\mathrm{M}=\mathrm{Cr}$ for (II). Values for (II) were calculated				
from co-ordinates given in ref. 5. \dagger Directions in the octa-				

regular geometry is evident and is similar to that found in the parent dimer $\left[\left\{\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\right] .{ }^{5}$ It involves a shift of the carbonyl groups away from the other metal atom with the two carbonyl groups nearest it bending slightly away. The distortion most likely arises from intra-atomic repulsions.

I thank Dr. A. R. Manning for supplying a sample of the complex.
[4/1133 Received, 11th June, 1974]
${ }^{8}$ R. L. Livingston and C. N. R. Rao, J. Chem. Phys., 1959, 30, 339.
${ }^{9}$ L. Pauling, ' The Nature of the Chemical Bond,' 2nd edn., Cornell University Press, Ithaca, New York, 1948, p. 179.
${ }^{10}$ F. A. Cotton and D. C. Richardson, Inorg. Chem., 1966, 5, 1851.

[^0]: ${ }^{1}$ P. Hackett and A. R. Manning, J.C.S. Dalton, 1972, 2434.
 ${ }_{2}$ M. Mack, Norelco Reporter, 1965, 12, 40.
 3 ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

[^1]: * Cp is the centroid of a cyclopentadienyl ring.

[^2]: ${ }^{5}$ R. D. Adams, D. E. Collins, and F. A. Cotton, J. Amer. Chem. Soc., 1974, 96, 749.
 ${ }^{6}$ F. P. Boer and J. J. Flyn, J. Amer. Chem. Soc., 1971, 93, 6495.
 ${ }_{7}^{95 .}$ J. E. O'Connor and E. R. Corey, Inorg. Chem., 1967, 6, 968.

